
Spurious Fit in Thin Markets:
A Preprocessing Cautionary Tale Using Puerto Rico GO

Spreads

Jorge A. Arroyo
Independent Researcher

arroyo.jorgeantonio@gmail.com

February 2026

Abstract

Post-restructuring Puerto Rico GO bond spreads achieve strong in-sample fit but fail
dramatically in walk-forward evaluation. Using transaction-level yields from EMMA for
the most actively traded Series 2022A maturities, matched to constant-maturity U.S.
Treasury yields from FRED, I construct a monthly fiscal-stress signal from maturity-
matched spreads in a thin municipal market. In a burn-in window, a one-lag predictive
regression of Puerto Rico economic activity on the lagged spread signal produces a high
in-sample R2 (about 0.52) and a permutation-style p-value of 0.006. However, pseudo
out-of-sample performance collapses: out-of-sample R2 values are deeply negative
(about −6.4 to −8.3), and an AR(1) benchmark dominates. A forensic preprocessing
audit shows that carry-forward rules and EWMA smoothing do not materially affect
conclusions, while the rolling standardization window is decisive. Short (126-day)
rolling Z-scores induce an adaptive regressor that fits local regimes in the training
period but does not generalize; extending the window to 252 days sharply improves
walk-forward performance yet eliminates in-sample significance, indicating no stable
predictive content. The results highlight that in thin markets, preprocessing choices
can manufacture apparent predictability and walk-forward validation is essential.



1 Introduction

A standard premise in macro-finance is that asset prices are forward-looking and therefore
may contain information about future economic activity. This premise motivates a large
literature that uses high-frequency financial indicators to improve forecasts of lower-frequency
macroeconomic outcomes Andreou et al. (2013); Ghysels et al. (2004). Credit spreads are a
particularly salient candidate predictor: by construction, they embed market perceptions of
risk and compensation for bearing that risk, and in thick corporate markets they have been
shown to forecast real activity under disciplined pseudo out-of-sample evaluation schemes
Faust et al. (2013).

Applying this logic to municipal bonds is tempting. Municipal debt is exposed to local fiscal
conditions, and in principle municipal yields and spreads should aggregate information about
future tax capacity, fiscal stress, and economic performance. At the same time, municipal
markets differ sharply from corporate markets in microstructure. They are decentralized,
dealer-intermediated, and characterized by substantial search frictions and infrequent trading
Green et al. (2007). Sparse trading and stale pricing are documented features of fixed-income
markets and are especially pronounced in municipals Choi et al. (2022); Craig et al. (2018),
implying that measurement and preprocessing choices can be first-order determinants of
empirical results.

I study these issues in the post-restructuring Puerto Rico general-obligation (GO) market.
Puerto Rico provides a natural laboratory because its fiscal crisis and restructuring represent a
sharp institutional break Medioli et al. (2022); U.S. Government Accountability Office (2025),
and because prior work documents that credit risk and credit spreads were closely linked to
real economic deterioration during the pre-default period Chari et al. (2017). The central
question is whether a comparable relationship can be recovered in the post-restructuring
regime, using newly issued recovery instruments traded in a thin municipal market.

My starting point is a simple predictive regression that maps a monthly fiscal-stress signal—
constructed from maturity-matched Puerto Rico GO spreads—to the Puerto Rico Economic
Activity Index (EAI). In a burn-in (training) window, this specification appears highly
promising: the fiscal-spread regressor delivers a large in-sample coefficient of determination
(R2 ≈ 0.52) and a statistically significant slope estimate, with a permutation-style p-value of
0.006. The puzzle emerges immediately in real time. When I evaluate the same mapping using
a walk-forward procedure, performance collapses. Out-of-sample R2 values become extremely
negative (approximately −6 to −8 across evaluation windows), implying that the model
increases mean-squared prediction error by a wide margin relative to even a constant-mean
forecast. Moreover, a simple AR(1) benchmark for EAI—the natural prevailing forecast for
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a highly persistent macro series—dramatically outperforms the fiscal-spread model West
(2006); Hubrich and West (2010). The combination of strong in-sample fit and catastrophic
walk-forward failure is the central empirical fact the paper seeks to explain.

This pattern echoes classic warnings in time-series econometrics: regressions can ex-
hibit high in-sample fit and “significance” even when the underlying relationship is illusory
Granger and Newbold (1974), and persistence can further exaggerate apparent evidence for
predictability in small samples Stambaugh (1999). Yet the magnitude of the walk-forward
failure in my setting is unusual. Before drawing substantive conclusions about whether
post-restructuring municipal spreads contain information about future economic activity,
it is essential to understand why the relationship looks strong in-sample but disintegrates
out-of-sample.

I consider three broad explanations. First, the relationship could be genuinely unstable:
the mapping from fiscal spreads to economic activity might differ across regimes and break in
the post-restructuring period. Second, the predictor could be contaminated by thin-market
measurement error: nonsynchronous trading and stale pricing can generate spurious serial
dependence and false predictability Lo and MacKinlay (1989); Choi et al. (2022). Third,
the relationship could be an artifact of preprocessing: when the underlying series are sparse
and noisy, the transformations used to create a usable regressor can themselves manufacture
apparent signal. This paper focuses on the third explanation and asks a targeted question:
which preprocessing component, if any, is responsible for producing the strong in-sample
relationship and the catastrophic out-of-sample failure?

My approach is deliberately simple. The predictive model is a one-lag regression of
monthly EAI on the lagged fiscal-spread signal, evaluated against an AR(1) benchmark.
The key methodological ingredient is the evaluation design: I treat walk-forward (pseudo
out-of-sample) performance as the primary diagnostic, consistent with the forecast-evaluation
literature emphasizing that in-sample fit can fail to translate into predictive ability, especially
in nested-model comparisons West (2006); Clark and West (2007). Formal comparisons can
be framed in terms of MSPE differentials Diebold and Mariano (1994), but the headline
evidence in my setting is already decisive: the fiscal-spread model performs dramatically
worse than the benchmark out-of-sample.

To isolate the mechanism, I conduct a one-at-a-time preprocessing sensitivity analysis
under the same walk-forward design and benchmark. Starting from a baseline signal construc-
tion (daily maturity-matched spreads, composite aggregation across bonds, carry-forward
treatment of non-trading days, EWMA smoothing, rolling Z-score standardization, and
monthly aggregation), I vary three components: (i) the carry-forward protocol (uncapped
carry-forward versus no carry-forward); (ii) EWMA smoothing (enabled versus disabled);
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and (iii) the rolling standardization window (a short 126-business-day Z-score window ver-
sus a conventional 252-business-day window). This “forensic” design distinguishes between
two qualitatively different sources of failure. If the predictive relationship is economically
meaningful but contaminated by thin-trading noise, then modest changes to imputation and
smoothing should materially alter results. If, instead, the relationship is induced by adaptive
transformations that overfit local regimes, then normalization choices should be decisive.

Four findings emerge. First, the baseline in-sample relationship is not stable: the fiscal-
spread model delivers a strong burn-in fit but fails catastrophically under walk-forward
validation, while the AR(1) benchmark dominates. Second, carry-forward rules do not
materially affect conclusions. Under the monthly aggregation procedure used to align
daily spreads to monthly EAI, differences in daily carry-forward implementation are largely
attenuated. Third, EWMA smoothing is not the source of spurious fit and may modestly
stabilize the regressor; disabling smoothing does not repair out-of-sample performance.
Fourth, and most importantly, the rolling Z-score window length is the smoking gun. Short
(126-day) standardization windows make the regressor highly adaptive to local mean and
volatility regimes, enabling a spurious alignment with the burn-in sample. Extending the
window to 252 days dramatically reduces the severity of the walk-forward collapse but
simultaneously eliminates statistical significance and does not produce a positive, stable
forecasting relationship. Taken together, these results indicate that the apparent in-sample
predictability is primarily preprocessing-induced overfitting rather than genuine information
content.

The paper makes four contributions. First, it provides a negative result with positive
value: post-restructuring Puerto Rico GO spreads, constructed from thinly traded municipal
bonds, do not reliably predict monthly economic activity beyond persistence benchmarks.
Second, it identifies a concrete mechanism for spurious fit in thin markets: adaptive rolling
standardization windows can dominate empirical outcomes, creating the appearance of
predictability in small samples even when none exists. Third, it emphasizes best practices
for macro-finance forecasting in settings with sparse financial data. Walk-forward validation
should be treated as essential rather than optional, and preprocessing choices—especially
normalization windows—should be audited for sensitivity. This complements broader warnings
about predictor mining and forecast breakdowns in macroeconomic forecasting Faust et al.
(2013). Fourth, it adds nuance to the broader mixed-frequency forecasting literature. While
high-frequency financial data can improve macro forecasts in liquid markets Andreou et al.
(2013); Ghysels et al. (2004), thin-market microstructure and preprocessing sensitivity can
overturn that promise in municipal settings.

The remainder of the paper proceeds as follows. Section 2 describes the data sources
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and constructs the fiscal-stress signal from post-restructuring Puerto Rico GO spreads,
including thin-trading diagnostics. Section 3 presents the baseline predictive regression
results and documents the discrepancy between strong burn-in fit and catastrophic walk-
forward performance relative to an AR(1) benchmark. Section 4 conducts the preprocessing
forensics and isolates the rolling Z-score window as the primary driver of spurious fit.
Section 5 interprets the mechanism, relates the findings to the literature, and draws practical
implications. Section 6 concludes.

2 Data and Signal Construction

2.1 Data Sources

My fiscal-risk data are drawn from post-restructuring Puerto Rico General Obligation (GO)
bonds in the MSRB Electronic Municipal Market Access (EMMA) system (Chirinko et al.,
2018). I focus on the most actively traded maturities in the Series 2022A cohort (first
available on March 15, 2022) (Medioli et al., 2022): a 2031 GO (CUSIP 74514L3J4), a 2037
GO (CUSIP 74514L3M7), and a 2046 GO (CUSIP 74514L3P0). For each CUSIP, I use
transaction-level information to construct daily volume-weighted average yields (VWAY).

To compute maturity-matched spreads, I pair each GO maturity with a constant-maturity
U.S. Treasury benchmark from FRED: DGS7 for the 2031, DGS10 for the 2037, and DGS20
for the 2046.1 The macroeconomic outcome is the Puerto Rico Economic Activity Index
(EAI), observed monthly (Department of Economic Development and Commerce, 2026; U.S.
Government Accountability Office, 2025).

Table 1 summarizes sample spans and highlights the frequency mismatch between daily
financial series and the monthly macro target. In the absence of dedicated mixed-frequency
methods, I align the series through temporal aggregation, following the common practice in
the mixed-frequency forecasting literature (Andreou et al., 2013; Ghysels et al., 2004).

2.2 Spread Construction and Fiscal Stress Signal

Daily maturity-matched spreads. Let yGO
j,t denote the daily VWAY for GO maturity

j ∈ {2031, 2037, 2046} on business day t, and let yUST
m(j),t denote the corresponding Treasury

yield (DGS7/DGS10/DGS20). The raw daily spread is

sj,t = yGO
j,t − yUST

m(j),t. (1)
1Treasury constant-maturity series are from the Federal Reserve Economic Data (FRED) system; see the

series documentation for DGS7, DGS10, and DGS20.
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Table 1: Sample characteristics and data availability.

Series Frequency Period N Coverage / thin-trading
statistics

PR GO 2031
(74514L3J4)

Daily
(trades)

2022-03-15–2026-
02-17

1026 12.28% zero-trade; median
no-trade run 1.0d; max 6d

PR GO 2037
(74514L3M7)

Daily
(trades)

2022-03-15–2026-
02-17

1026 14.72% zero-trade; median
no-trade run 1.0d; max 15d

PR GO 2046
(74514L3P0)

Daily
(trades)

2022-03-15–2026-
02-17

1026 13.84% zero-trade; median
no-trade run 1.0d; max 23d

UST DGS7/DGS10/
DGS20

Daily 2010-01-01–
2026-02-12

4205 —

EAI, ∆EAI (N=316) Monthly 1999-07-31–2025-
11-30

317 —

Thin-trading protocol and composite spread. Municipal bonds trade in a decentralized,
dealer-intermediated OTC market, and observed prices can be stale and unevenly updated
across securities (Green et al., 2007; Craig et al., 2018; Choi et al., 2022). To produce a daily
series, I apply a carry-forward rule: when a given CUSIP does not trade on day t, I set its
spread to the most recently observed value.2 I then aggregate across maturities using a daily
cross-sectional median,

st = median{s2031,t, s2037,t, s2046,t}, (2)

which reduces sensitivity to idiosyncratic pricing noise and maturity-specific quotation
irregularities.

Smoothing, standardization, and temporal aggregation. I optionally smooth the
daily composite spread st using an EWMA filter (baseline span = 10 business days). I then
standardize the (smoothed) spread using a rolling Z-score,

zt = st − µt−1(s)
σt−1(s) , (3)

where µt−1(s) and σt−1(s) are the mean and standard deviation computed over a trailing
window of length W ending at t − 1 (baseline W = 126 business days). The t−1 convention
avoids look-ahead by ensuring that the normalization on day t uses only information available
prior to t.

Finally, to align with the monthly EAI target, I aggregate the daily standardized signal
2In the baseline configuration, carry-forward is uncapped (no maximum carry duration). This choice is

convenient for daily alignment and is audited in Section 4.
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to month m using a flat within-month average:

RTm = 1
|D(m)|

∑
t∈D(m)

zt, (4)

where D(m) denotes the set of business days in month m (Andreou et al., 2013; Ghysels
et al., 2004). Figure 1 plots the daily composite spread and the standardized signal and
indicates the burn-in and evaluation windows used in subsequent sections.

Figure 1: Fiscal stress signal (daily): raw composite spread and rolling Z-score. Shaded
regions denote the burn-in, validation, and out-of-sample windows.

2.3 Thin-Trading Diagnostics

Carry-forward rules can interact with sparse trading and nonsynchronous price-setting
to induce mechanical persistence and spurious serial dependence in daily series (Lo and
MacKinlay, 1989; Choi et al., 2022). To quantify market thinness, I compute a daily coverage
ratio: the fraction of the three CUSIPs that trade on day t. Figure 2 plots this coverage ratio
over time, and Table 2 reports summary diagnostics for the composite construction.

Two features are worth emphasizing. First, although the mean coverage ratio is relatively
high (0.866), there remains a nontrivial mass of days with incomplete trading across the
three CUSIPs. This motivates both the composite-median aggregation and the explicit thin-
trading protocol (Green et al., 2007; Craig et al., 2018; Wu, 2025). Second, because inference
and forecasting are conducted on the monthly aggregate RTm, some daily-level protocol
differences (such as the fine details of carry-forward implementation) may be attenuated by
temporal aggregation. This observation motivates the one-at-a-time preprocessing forensics
in Section 4.
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Figure 2: Fiscal coverage ratio (daily): fraction of configured GO CUSIPs trading on each
business day.

Table 2: Thin-trading diagnostics for the composite fiscal spread (daily).

Diagnostic Value Notes
Zero-trade days (%) 8.11 No configured bonds trade
Stale days (%) 4.1 Only one bond trades (multi-bond

mode)
Median carry duration (days) 1 Consecutive carry-forward length

(applied)
Max consecutive carry (days) 4 Capped at

MAX_FISCAL_CARRY_DAYS
Mean coverage ratio 0.866 Average fraction trading

3 Empirical Procedure and Baseline Results

This section asks whether the post-restructuring Puerto Rico GO fiscal-spread signal con-
tains incremental predictive information for Puerto Rico economic activity beyond simple
persistence. Throughout this section I use the baseline preprocessing configuration described
in Section 2: (i) uncapped carry-forward (carry=None); (ii) EWMA smoothing enabled
(ewma=True, span = 10 business days); and (iii) rolling standardization using a 126-business-
day window (W = 126).

3.1 Evaluation windows and the prevailing benchmark

I partition the post-restructuring sample into an initial burn-in (training) period and two
subsequent walk-forward evaluation periods (validation and out-of-sample). Table 3 reports
the calendar spans used to define these regimes.

Because the Economic Activity Index (EAI) is highly persistent at the monthly frequency,
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Table 3: Evaluation windows (calendar definitions).

Window Start End Months Purpose
Burn-in 2022-03-15 2023-12-31 22 Initial estimation / mapping cali-

bration
Validation 2024-01-01 2024-12-31 12 Walk-forward evaluation I
Out-of-sample 2025-01-01 2026-02-17 14 Walk-forward evaluation II

the relevant benchmark is a univariate autoregression (Department of Economic Development
and Commerce, 2026; U.S. Government Accountability Office, 2025; Hubrich and West, 2010).
In the spirit of a “prevailing forecast” benchmark, I treat an AR(1) model as the standard
that any fiscal-spread predictor must beat in walk-forward evaluation (Hubrich and West,
2010; West, 2006).

3.2 Models

Let ym denote the level of EAI in month m and let RTm denote the monthly fiscal-stress
signal constructed in Section 2. I consider two one-step-ahead forecasting models.

Fiscal-spread model. The baseline predictive regression is a one-lag distributed-lag
specification,

ym = α + β RTm−1 + εm. (5)

AR(1) benchmark. The benchmark is the prevailing AR(1),

ym = α + ϕ ym−1 + um. (6)

3.3 Walk-forward protocol and out-of-sample performance

Forecasts are generated in a walk-forward manner. At each evaluation month, parameters
are estimated using only data available up to that month, and a one-step-ahead forecast
is produced (West, 2006; Clark and West, 2007; Hubrich and West, 2010). I summarize
predictive accuracy using an MSPE-based out-of-sample R2,

R2
OOS = 1 −

∑
m∈T (ym − ŷm)2∑
m∈T (ym − yT )2 , (7)

where T denotes the evaluation window and yT is the sample mean of ym over T . Negative
values indicate forecasts that are worse than a constant-mean forecast over that window
(West, 2006; Clark and West, 2007).

9



3.4 Burn-in evidence: strong fit, but not relative to persistence

I begin with burn-in (in-sample) performance. Table 4 reports static fit for the fiscal-spread
model (5) and the AR(1) benchmark (6) under the baseline preprocessing (carry=None,
EWMA=True, W = 126). The fiscal-spread regression attains a high in-sample R2 (0.517)
and a statistically significant slope estimate (β̂ = −1.435, p = 0.0026). However, persistence
dominates: the AR(1) benchmark fits the burn-in sample substantially better (R2 = 0.905;
RMSE 0.636 versus 1.431 for DL(1)), consistent with the high monthly persistence of EAI
(Department of Economic Development and Commerce, 2026; Hubrich and West, 2010).

Figure 3 provides the visual counterpart to Table 4. The AR(1) fitted values track the
level of EAI almost point-for-point over the burn-in window. The fiscal-spread model also
produces a close in-sample tracking, but with noticeably larger deviations at several dates
(most visibly around early 2023), which is reflected in its higher RMSE despite the seemingly
strong R2.

Table 4: Burn-in static fit (EAI level). Baseline preprocessing: carry=None, EWMA=True,
W = 126.

Model n R2 RMSE Key coefficient p-value
DL(1): ym = α + βRTm−1 15 0.517 1.431 β̂ = −1.435 0.0026
AR(1): ym = α + ϕym−1 15 0.905 0.636 – < 0.001

Figure 3: Burn-in fit (EAI level): actual versus fitted values under DL(1) and AR(1). The
burn-in window spans 2022:04–2023:12. AR(1) tracks the highly persistent EAI series closely;
DL(1) also fits in-sample but with larger deviations at several dates, consistent with its higher
RMSE in Table 4.
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3.5 Walk-forward evidence: large and persistent forecast failure

The central empirical fact is that the fiscal-spread model does not survive walk-forward
evaluation. Table 5 reports pseudo out-of-sample performance in the validation and out-
of-sample windows. The fiscal-spread model produces extremely negative out-of-sample R2

values, indicating MSPE far worse than a constant-mean forecast over those windows. In
contrast, the AR(1) benchmark performs well in validation and remains far more stable
out-of-sample (West, 2006; Clark and West, 2007; Hubrich and West, 2010).

Table 5: Walk-forward performance (EAI level). Baseline preprocessing: carry=None,
EWMA=True, W = 126.

Model Window n R2
OOS RMSE

DL(1) Validation (2024) 12 -6.442 1.766
DL(1) Out-of-sample (2025–2026) 11 -8.270 1.332
AR(1) Validation (2024) 12 +0.669 0.372
AR(1) Out-of-sample (2025–2026) 11 -0.080 0.455

3.6 A Goyal–Welch diagnostic: cumulative squared error differ-
ences

To identify when the fiscal-spread model underperforms the benchmark, I follow Goyal and
Welch (2008) and plot the cumulative difference in squared one-step-ahead prediction errors
(West, 2006):

∆SPE(T ) =
∑

m≤T

(
e2

AR(1),m − e2
DL,m

)
, (8)

where eAR(1),m = ym − ŷ AR(1)
m and eDL,m = ym − ŷ DL

m are walk-forward forecast errors. With
this sign convention, upward movements indicate months in which the fiscal-spread model
reduces squared error relative to AR(1), while downward movements indicate benchmark
dominance.

Figure 4 shows that ∆SPE(T ) is negative throughout the evaluation sample and becomes
more negative in two pronounced episodes. The series begins the validation window already
below zero (about −7.4 at 2024:01) and remains near −7 through mid-2024, with only small
month-to-month reversals. Benchmark dominance then accelerates sharply in late 2024: the
cumulative differential drops by roughly 19 units in 2024:09 (from about −11.1 to −30.2),
and reaches about −35.0 by 2024:10. After a period of slower drift in early 2025, a second
large deterioration occurs in 2025:05 (a drop of roughly 11.8 units, from about −38.0 to
−49.8). The cumulative differential continues to decline thereafter, ending near −53.0 by
2025:11. These dynamics provide a time-localized view of the same message conveyed by the
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window-level R2
OOS statistics: the fiscal-spread model loses persistently and by a wide margin

in real time.

Figure 4: Cumulative squared prediction error difference between AR(1) and DL(1),∑
m≤T

(
e2

AR(1),m − e2
DL,m

)
. Upward movements indicate months where DL(1) improves on

AR(1); downward movements indicate AR(1) dominance. Shaded regions denote the valida-
tion and out-of-sample windows.

3.7 Interpretation

The baseline results therefore sharpen the puzzle motivating the preprocessing forensics
in Section 4. The fiscal-spread signal looks informative in the burn-in period, yet walk-
forward performance is dominated by a simple persistence benchmark and the cumulative
error differential drifts steadily downward, with discrete “cliffs” in late 2024 and mid-2025
(Figure 4). This pattern is consistent with the view that the apparent in-sample relationship
does not reflect a stable mapping that generalizes out-of-sample (Granger and Newbold,
1974; Stambaugh, 1999; West, 2006; Clark and West, 2007). The remainder of the paper
isolates which preprocessing component(s) generate the burn-in fit and the extreme pseudo
out-of-sample instability.

4 Preprocessing Forensics

Section 3 documents the central empirical pattern: under the baseline configuration (carry=
None, EWMA=True, W = 126), the fiscal-spread regression fits the burn-in period well yet fails
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dramatically in walk-forward evaluation. This section conducts a one-at-a-time preprocessing
audit to determine which transformation is responsible for the apparent in-sample relationship
and the extreme out-of-sample instability (Granger and Newbold, 1974; West, 2006; Clark
and West, 2007).

The design is intentionally diagnostic. I hold the forecasting regression fixed (DL(1) in
(5)) and vary only a single preprocessing component, leaving all remaining steps at their
baseline values. For each configuration, I report burn-in (static) fit and pseudo out-of-sample
performance in the validation and out-of-sample windows. The question is not which model
performs best in-sample, but which preprocessing change materially alters the out-of-sample
failure mode.

4.1 Test A: Carry-forward protocol

Design. The baseline daily spread construction uses carry-forward to fill non-trading days.
To assess whether this imputation rule is mechanically generating persistence and spurious
fit, Test A eliminates carry-forward by setting the cap to zero (trade-days only).

Result. Test A produces essentially no change in burn-in fit or walk-forward performance
(Table 7). In this application, where the forecasting exercise is conducted on the monthly
aggregate RTm, the details of daily carry-forward appear to be largely washed out by temporal
aggregation.

4.2 Test B: EWMA smoothing

Design. The baseline applies EWMA smoothing (span = 10 business days) prior to rolling
standardization. Test B disables smoothing.

Result. Disabling EWMA does not repair the walk-forward failure and can worsen out-of-
sample performance (Table 7). The evidence therefore does not support smoothing as the
driver of the baseline pattern; if anything, smoothing modestly stabilizes the constructed
signal.

4.3 Test C: Rolling Z-score window length

Design. The baseline standardizes the daily composite spread using a short trailing window
(W = 126 business days). Test C increases the window length to W = 252 business days,
holding all other steps fixed (carry=None, EWMA=True).
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Result. Table 6 shows that the normalization window materially changes the empirical
conclusions. The short-window configuration produces a high-R2 burn-in regression and a
statistically significant slope estimate, but extremely negative walk-forward R2

OOS values.
Under the longer 252-day window, walk-forward performance improves sharply (validation
R2

OOS ≈ −0.01 and out-of-sample R2
OOS ≈ −1.01). At the same time, the burn-in relationship

weakens: statistical significance disappears (permutation p = 0.08), and the effective burn-in
sample shrinks because the longer window requires a larger initial lookback.

Table 6: Z-score window sensitivity: baseline (126 days) vs. conservative (252 days).

Metric 126-day (Baseline) 252-day (Conservative) Change
Burn-in
Static R2 0.517∗ 0.387 -0.130
RMSE 1.43 0.63 -0.80
Sample N 15 9 -6
Walk-forward validation
R2

OOS -6.442 -0.013 +6.430
RMSE 1.77 0.60 -1.17
Walk-forward out-of-sample
R2

OOS -8.270 -1.006 +7.264
RMSE 1.33 0.62 -0.71
Permutation test
p-value 0.006∗ 0.080 (n.s.) –

Figure 5 summarizes the sensitivity in Table 6. The improvement in R2
OOS when moving

from W = 126 to W = 252 indicates that short-window standardization is a primary driver
of the baseline out-of-sample collapse. However, even the conservative choice does not deliver
positive and stable out-of-sample performance.

Interpretation. Rolling standardization with a short window makes the transformed
regressor highly adaptive to local mean and volatility regimes. In small samples, this
adaptivity can generate a variable that aligns closely with the burn-in period yet does not
represent a stable mapping that persists out-of-sample. Lengthening the window reduces
this adaptivity, attenuating the apparent in-sample relationship and substantially reducing
the severity of the walk-forward failure. This interpretation is consistent with the forecast-
evaluation literature emphasizing that estimation noise and instability can inflate pseudo
out-of-sample prediction error in finite samples, particularly in nested comparisons (West,
2006; Clark and West, 2007).
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Figure 5: Walk-forward performance by rolling Z-score window length. Bars report out-of-
sample R2

OOS for the validation and out-of-sample windows under W = 126 (baseline) and
W = 252 (conservative).

4.4 Summary

Table 7 consolidates the three tests. In this design, carry-forward details have negligible
effects once the signal is aggregated to the monthly frequency. EWMA smoothing is not
responsible for the baseline pattern and may modestly stabilize the constructed series. By
contrast, the rolling Z-score window length is the dominant determinant of both the apparent
burn-in significance and the magnitude of the walk-forward failure.
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Table 7: Preprocessing robustness summary (one-at-a-time variations).

Parameter tested Configuration Val R2
OOS OOS

R2
OOS

Burn-in
R2

Sample
N

Conclusion

Carry-forward
cap

Baseline:
Unlimited

-6.44 -8.27 0.517 15 –

Test A: 0 days -6.44 -8.27 0.517 15 Negligible effect
EWMA
smoothing

Baseline:
Enabled

-6.44 -8.27 0.517 15 –

Test B: Disabled -6.16 -12.25 0.546 15 Not the driver;
may stabilize

Z-score window Baseline: 126
days

-6.44 -8.27 0.517∗ 15 High sensitivity

Test C: 252 days -0.01 -1.01 0.387 9 Short window
drives IS/OOS
divergence

5 Discussion

Sections 3–4 deliver a consistent message. In the post-restructuring sample and at the monthly
horizon, the Puerto Rico GO spread signal does not yield robust incremental forecasting power
for Puerto Rico economic activity relative to a simple persistence benchmark. The apparent
in-sample relationship is highly sensitive to preprocessing, with the dominant sensitivity
concentrated in the rolling standardization step. This section interprets the mechanism
suggested by the forensics, explains why more conservative choices do not generate stable
predictability, and relates the findings to the broader macro-finance forecasting literature.

5.1 Mechanism: instability induced by adaptive normalization

The baseline results exhibit a familiar empirical pattern: strong burn-in fit and apparently
significant coefficients coincide with sharp deterioration in walk-forward forecasting perfor-
mance. In time-series settings, such outcomes can arise when conventional inference overstates
evidence for a relationship because key assumptions are violated (Granger and Newbold,
1974). In predictive regressions, small-sample distortions can be particularly important when
regressors are persistent and correlated with the regression disturbance (Stambaugh, 1999).

In my setting, the evidence points to a distinct but related mechanism. The instability
is not driven primarily by the raw spread level; rather, it emerges from an adaptive trans-
formation of the spread. Short-window rolling Z-scores make the standardized series highly
sensitive to local shifts in mean and volatility. With limited burn-in data, this adaptivity can
produce a transformed regressor that tracks regime-specific variation in the training period,
even if no stable mapping exists between spreads and subsequent economic activity. The
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resulting predictor can therefore look informative in-sample while failing to generalize.
This interpretation is consistent with standard forecast-evaluation logic for nested models.

When the true incremental predictive content is weak or absent, estimating additional
parameters introduces noise that raises out-of-sample MSPE for the larger model (West, 2006;
Clark and West, 2007; Hubrich and West, 2010). From this perspective, strongly negative
R2

OOS values are not paradoxical; they can occur when an unstable predictor is introduced in
a finite sample and evaluated in real time.

5.2 Why thin markets can magnify preprocessing artifacts

Municipal bond markets are decentralized, dealer-intermediated, and illiquid relative to
exchange-traded assets (Green et al., 2007). Sparse trading and stale pricing are structural
features of fixed-income markets and are especially pronounced in municipals (Choi et al.,
2022; Craig et al., 2018). Nonsynchronous trading can induce mechanical serial dependence
and cross-dependence in observed prices that is not directly tied to fundamentals (Lo and
MacKinlay, 1989). These frictions motivate imputation and smoothing in data construction,
but they also create conditions under which adaptive transformations can manufacture
apparent “signal.”

In my application, the daily fiscal spread is constructed from a small set of bonds with
observable non-trading episodes (Section 2.3). The forensics indicate that carry-forward and
EWMA smoothing are not the primary drivers of the baseline IS–OOS discrepancy (Table 7).
Instead, the key interaction appears to be between thin-market-induced persistence/noise
in the daily spread and a short normalization window that amplifies local variation into
large standardized movements. This interaction makes the predictor’s statistical properties
highly sample-dependent and helps explain why the burn-in relationship does not survive
walk-forward validation.

5.3 Why conservative Z-windows do not recover stable predictabil-
ity

Increasing the Z-score window from 126 to 252 trading days sharply reduces the severity of the
walk-forward collapse (Table 6 and Figure 5). This sensitivity is informative: it indicates that
the most pathological out-of-sample behavior is largely induced by short-window adaptivity.
At the same time, the conservative window does not produce reliably positive R2

OOS values,
and the burn-in relationship becomes statistically weaker.

Taken together, these results support a simple reading of the forensics. The short window
is sufficiently adaptive to fit transient co-movements between the standardized spread and
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EAI during the burn-in period; when conditions change, that mapping breaks down. The
longer window reduces regime-tracking capacity and therefore reduces instability, but it also
reveals that any underlying relationship is not strong enough to deliver robust incremental
forecasting gains over persistence. Conservative preprocessing can mitigate overfitting; it
cannot create signal that is not present in the data.

5.4 Relation to the literature

Two strands of evidence provide context. First, corporate credit spreads in thick markets have
been shown to forecast real activity when measured carefully and evaluated using pseudo
out-of-sample designs (Faust et al., 2013). This aligns with the macro-finance premise that
market prices may incorporate information about future macroeconomic outcomes (Andreou
et al., 2013). Second, the same literature emphasizes that apparent predictability is vulnerable
to instability, data mining, and post-documentation breakdowns (Faust et al., 2013). My
findings illustrate a distinct channel for such breakdowns in thin markets: preprocessing
choices can materially shape inference and pseudo out-of-sample performance, and can
generate the appearance of predictability in small samples.

Puerto Rico also provides a useful historical contrast. During the pre-default period,
Puerto Rico credit risk and spreads were closely linked to real economic deterioration
(Chari et al., 2017). In the post-restructuring period, the informational content of GO
spreads may be attenuated by institutional features of the new instruments and by market
microstructure, including sparse and opaque trading (Medioli et al., 2022; Green et al.,
2007). More broadly, official sources emphasize that Puerto Rico’s post-restructuring fiscal
environment and economic outlook differ meaningfully from the pre-default regime (U.S.
Government Accountability Office, 2025). In such conditions, it is plausible that a simple
spread-based predictor does not outperform a persistence benchmark in real time.

5.5 Implications

Two implications follow.

For researchers. Pseudo out-of-sample validation should be treated as a central diagnostic
rather than a secondary robustness check, particularly when predictors are persistent or
constructed through adaptive transformations (West, 2006; Clark and West, 2007; Diebold
and Mariano, 1994). In addition, preprocessing choices—especially rolling standardization
windows—should be reported transparently and audited for sensitivity. In thin markets,
where raw series are sparse and noisy, preprocessing can dominate empirical outcomes.
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For practitioners. For practical forecasting of Puerto Rico economic activity in the post-
restructuring period, GO spreads constructed from thinly traded issues do not appear to
provide a reliable standalone leading indicator in my sample. Simple persistence benchmarks
can dominate in real time, and strong in-sample relationships may reflect data handling
rather than stable information aggregation.

5.6 Limitations and future directions

My analysis is intentionally narrow. It focuses on a short post-restructuring window with
limited monthly observations and on a parsimonious mapping from a composite GO spread
to EAI. Future work could consider mixed-frequency models that use daily information more
efficiently than flat aggregation (Ghysels et al., 2004, 2006), incorporate broader measures
of financial conditions, or explicitly model thin-trading processes. Such extensions may
improve forecasting performance in principle, but the core lesson remains: without disciplined
walk-forward evaluation and preprocessing audits, apparent predictability can be fragile and
may be induced by transformation choices rather than underlying economic information.

6 Conclusion

This paper examines whether post-restructuring Puerto Rico GO bond spreads forecast
Puerto Rico economic activity at the monthly horizon. Under the baseline signal construction,
the fiscal-spread predictor appears informative in the burn-in period, delivering a high in-
sample R2 and statistically significant slope estimates. However, the relationship does not
survive real-time evaluation. In walk-forward forecasting, out-of-sample R2 values are sharply
negative, and a simple AR(1) persistence benchmark dominates.

A one-at-a-time preprocessing audit clarifies the source of this discrepancy. Varying
carry-forward rules and EWMA smoothing has negligible effects on pseudo out-of-sample
performance. By contrast, the rolling standardization window is pivotal. Short (126-day)
Z-score windows yield a highly adaptive transformed regressor that can fit local mean
and volatility regimes in small samples, producing an in-sample relationship that does not
generalize. Extending the window to a conventional 252-day horizon substantially reduces
the severity of the walk-forward collapse, but it also weakens the burn-in evidence and does
not produce positive, stable out-of-sample forecasting gains.

The empirical conclusion is therefore negative but informative. In the post-restructuring
period and in my sample, Puerto Rico GO spreads constructed from thinly traded bonds
do not provide robust incremental predictive content for monthly economic activity beyond
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simple persistence. The broader lesson is methodological. In thin markets, preprocessing
choices can materially shape inference and forecast performance, and disciplined walk-
forward validation is essential even when in-sample fit and permutation-style significance tests
appear compelling. These findings reinforce the general warning that time-series regressions
can generate statistical mirages (Granger and Newbold, 1974) and highlight, in a modern
forecasting setting, how estimation noise and instability can degrade pseudo out-of-sample
accuracy in nested comparisons (West, 2006; Clark and West, 2007).
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